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I ntroduction

This paper describes a moment method formulation for calculating the pickup and
kicker impedances of a stochastic cooling waveguide structure. A schematic of the
waveguide pickup is shown in Figure 1.
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Figure 1. Schematic of a stochastic cooling waveguide pickup/kicker.

Slots carved in a waveguide wall will dow down the phase velocity of a wave in
the waveguide. The reduction in phase velocity is a function of the dot length, width, and
the spacing between dots. The coupling of the slots to the beam is proportional to the slot
length. When the reduced phase velocity of the waveguide matches the beam velocity, the
coupling of the slots will add constructively. In this ow-wave mode, the gain of the array
is proportional to the number of dots and the bandwidth of the array is inversely
proportional to the number of dots.

Finite element methods for are poorly suited for solving electromagnetic problems
with thin wall apertures. The thin wall causes the electromagnetic field pattern to vary
rapidly in the vicinity of the aperture. For finite elements, this would require a fine mesh
around the apertures resulting in very large matrices to invert. Also, finite elements yield
the solution for the electromagnetic field everywhere in the problem. To calculate pickup
and kicker impedances, the electromagnetic field has to be known only at the dots or
along the beam path.
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For these reasons, a moment method approach will be used for calculating the
pickup and kicker impedances.

Geometry of the Problem

The geometry of the problem is shown in Figures 2 and 3. Two regions (Regions |
& Il) are separated by a conducting screens in the X-Z plane. These regions may have
different dielectric constants or backing plate configurations. The beam travels in the z
direction somewhere in Region |. The two regions are connected by a hole or aperture in
the screen. The purpose of the moment method program is to find the tangential electric
and magnetic fields in this aperture.
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Figure 2. Sde view of a stochastic cooling waveguide pickup/kicker
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Figure 3. Head-on view of stochastic cooling waveguide pickup/kicker
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Figure 4. Decomposition of an off-center beam into the sum and difference modes.

Electric Boundary = difference mode
Maanetic Boundary = sum mode
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Figure 5. Sde-view of %2 of the pickup after symmetry decomposition

Electric Boundary = difference mode
Maanetic Boundary = sum mode

Y,
z A)‘—Vx
Figure 6. Head-on view of ¥z of the pickup after symmetry decomposition.

The problem can be divided into sum and difference modes as shown in Figure 4.
The sum and difference modes will be used for momentum and transverse cooling
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structures, respectively. For the sum mode, the magnetic field component parallel to the x-
z plane at the center of the structure is zero. The x-z plane at the center can then be
replaced with a magnetic conductor as shown in Figures 5 and 6. For the difference mode,
the electric field component parallel to the x-z plane at the center of the structure is zero.
The x-z plane at the center can then be replaced with an electric conductor.

Magnetic Current Sources

The moment method approach for this problem will be to solve for the tangentia
magnetic field in the aperture. Because the tangential electric field is zero on the
conducting screen that separates the two regions, this approach is best formulated using
magnetic current sources instead of electric current sources. Since magnetic current
sources are an unfamiliar topic with most people, this section will describe the properties
of magnetic current sources.

Since magnetic charge has not been found to exist, a magnetic current is defined by
the Equivalence Principle. As shown in Fig 7a, a set of sources produces a field, E and H.
A imaginary boundary is now drawn around the sources. The Equivalence Principle states
that the same field, E and H, will exist outsde the boundary if there is zero field and no
sources inside the boundary but the boundary is coated with equivaent surface currents as
shown in Figure 7b. These sources are;

J=A"H
Ms=E f (1)
where:
N“ H = jweE + Jd(F - %) @
and:
- N E=jwrH+Md(F - %) (3)

The time dependence assumed is WM.

E,H E,H
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Figure7.

Since the fields are zero just inside the boundary we can place any materia we
want inside the boundary and not effect the fields outside of the boundary. In Figure 8a,
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the boundary is replaced by an electric conductor (Etan = 0) which shorts out the electric
current Js. Likewise, in Figure 8b, the boundary is replaced by a magnetic conductor
(Htan = 0) which shorts out the magnetic current Ms.
E.H
Js=n X\u‘_|-|-|-,~'Z]

S,

Zero Fidd f' Zero Field Y
. 1
Electric e , s

Conductor Y, ~ ggggﬂgr ’\'

Ms=Exn /~I'.l-|-|-ll‘“‘
a b.
Figure 8.
Consider the case of Figure 3a. Equation 2 reduces to:
N” H=jwE (4)

From the Continuity equation between electric charge and electric current, if there is no
electric current, there is no electric charge. If there is zero electric charge, the divergence
of E is zero. When the divergence of E is zero, an electric vector potential can be defined
as.

E=--N"F (5)

ol

With the appropriate choice of gauge, Maxwell's equations can be combined into:

(N2+k2)3=-eh7l

k2 =w?nme

(6)

The magnetic field is given as:
A=- —(k2|3+|'\'|(|'\'|- ﬁ)) 7)

Equation 6 can be solved by Green's function techniques where:

(N2 + kz)e(rm): - ed(F - 79 (8)
and:
() = g (oG (F[Fdave (9)

If the magnetic current is a surface current as given in Equation 3, then the magnetic field
isgiven as.
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() = 19 G2 gyt (o (rrdose+ R giie MS(FCI))G(F|F¢)ds¢E (10)
S S g

We will define the right hand side of Equation 10 as an operator on Mg that produces
H(r). That is:

Ak (F)o ,q(k)(,\7| )

where k denotes whether the field isfor Region | (k=1) or Region 11 (k=2).

(11)

The Theory of Moment Methods

Using the Equivalence Principle, the fields in Regions | and 1l of Figure 5 will
remain unchanged if the aperture is replaced by conducting screen coated with an
equivalent magnetic current source as shown in Figure 9.

y
Beam > X

M =E xvy z
Region | S t
[ 3 3 I )
M =-E xvy
S t
Aperture
Figure9.

The magnetic current sourcein Region | is:
M=E, ¢ (12)
where Et is the tangentia electric field that existed in the aperture before it was replaced

with conducting screen. To guarantee continuity of the tangential electric field in the
aperture, the equivalent magnetic current source in Region 1 is:

Mg =-E, ¥ (13)
The tangential magnetic field in Region | just above the aperture is given as the sum of the
incident field due to the beam with the aperture replaced by conductor and the magnetic
field due to the equivaent magnetic current source. That is at y=0:

AP =R, +AOE, 9) (14

It will be assumed that the incident magnetic field can be determined anayticaly or by
other methods. The tangentia field in Region Il just below the aperture at y=0is:
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Continuity of the tangential magnetic field through the aperture requires:
AY =R (16)
which results in the following equation:
A, - A, = RO 5 AP ) @

This is the key equation of the moment method. Since H(NC) s known, this equation can
be inverted to determine Et in the aperture. Because Equation 17 is an integral equation, it

is best solved by numerica methods. Let the tangentia electric field in the aperture be
given by:

E; =%Q Ex 0n(x,.2) +28 E Y n(x.2) (18)
n n

where gn(x,z) and y n(x,z) are a set of orthogonal functions. Equation. 17 can be turned

into a matrix equation by multiplying it by a set of orthogonal weighting functions f (x,z)
and integrating over the entire x-z plane. The following matrix elements are defined:

(F mlH an) = G m(x, 2IHE G (x, 2) iz (19)
X,Z

(FmlHOlY ) = @ mx 2RI Ry n(x,2) ixaz (20)
X,Z

<fm‘H9”C)i>= “fm(x,z)HS”C)i(x,z))dxdz (1)
X,Z

Equation 17 becomes:

i o & 0 o & 0
(1 [ HEP) - (f o[ HE™),) = & €& {f mlH Py ) s, - 8GR (M an) B
n 8k 2 n 8k 2
(22)
o &K 0 o &K 0
(F m|HE™) ) (1 | HE™ ) = & €8 (f m[H Iy ) 2B, - & EB (FmnlH P an) B,
n 8k 2 n 8k 2
(23)

Equations 22 and 23 form a set of linear equations which can be inverted to find the
electric field coefficients Ezp, and Exp,. If the electric field expansion functions, f and vy,
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are chosen to be as close to the actual solution as possible then only a few terms of the
expansion will be needed and the size of the matrix to be inverted will be minimized.

Resistive Terminations

The above derivation ignored resistive terminations in the aperture. In some
applications, the signal induced on a slot flows out of the slot to a combiner board by
means of microstrip line on the shadow side of the conducting screen as shown in Figure
10. This paper will model the microstrip connection to the slot as a thin film resistor as

shown in Figure 11.
Beam Y ‘:‘X z
Region |

Region |1 | - % y=0
Microstrip Line 0

v

Figure 10.

Region |
/\/\/\ y=0

Region 11 7
0

Figure 11. Note that the resistor does not cover the entire aperture in the y direction.

—
—>
—>
%

Figure 12.
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Consider athin film resistor shown in Figure 12 with a conductance/square of g W
1. The conductance for a uniform sheet of electric current flowing in the z direction is:

G= g% (24)

where W is the width and L is the length of the resistor. Now consider portions of the
aperture shown in Figure 5 filled with some of this thin film resistor. Equation 16
becomes:

A - A = g, 248" 9) (25)
Equation 17 becomes:
A - Ao =D, §)+HPE 9)+ a2 4E 9) (26)
Equations 22 and 23 become:
(fm HE™)- {F | ")
o B 0 o B 0 (27)
ata <f m|H>(<k)|y n> +<f m |9|y n>ZEzn -ata <f m|H>(<k)|Qn>ZExn
n 8k 7] n 8k 7]
<f m‘H(mc)1>_ <f ‘H(mc)2> —
o B 6 o B 6 (28)
asaf m|H§k)|y n>ZEz -adalf m|H§k)|Qn>+<f m|9|Qn>ZExn
n 8k 7] n 8k 7]
where
Fmlgy n) = @ff m(x.2)X9(x,2) %y (x,2))dxdz (29)
X,z
(fmlglan) = @¥f m(x.2)x9(x,2) >qn(x,z))dxdz (30)
X,z

Transverse Slot Between Two Waveguides

This section will examine the problem of a transverse coupling dot between two
waveguides as shown in Figures 13 and 14. The beam flows in the upper waveguide and
the output signal flows out of the lower waveguide. Also the lower waveguide could be
the housing for a combiner board network for the dots.

We will confine the dots to lie adong the y direction only. Also, the width of the
dot (Wj) will be very small compared to the wavelength of excitation. These restrictions
will allow us to neglect the y component of electric field in the dot. Also, we will consider
the case for an extremely reletavistic beam so that z component of magnetic field in the
slots may also be neglected. These assumptions reduce Equations 27 and 28 to:
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i i o H 0
<f m‘H9n°)1>' <f m‘Hg(mc)2> =8 C& (T m|H Oy o) +(f mldly n) Ez, (31)
n 8k 17
_Beam o W. y
Region | P x'
Region |1 Sloti-1 Slot i Sloti+1 z

Figure 13. Sde long view of coupled waveguide geometry.

A

v

A

v

El

Figure 14. Head on view of coupled waveguide geometry

In the absence of the coupling dlots shown in Figure 14, the fields inside the waveguides
can be expanded as sum of all the waveguide modes.

E* =8 Chle +&, P2 (322)
n
E =& Chle -, PP (32b)
n
H*=§ c;(ﬁtn +hy, )e b2 (32¢)
n
A" =& Cpl- Ay +h, b2 (32d)

10
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Consider a source inside avolume v surrounded by a surface S, in a waveguide as shown
in Figure 15.

My 4
|
o
}

My
+

z- e 4 z+e
Figure 15. Elemental volume in waveguide containing sour ces.

For two independent sets of fields and two independent sets of sources, the Lorentz
reciprocity theorem states:

ailEd Ab- B0 F2). Ads
SO
— ‘“Ea-jb- Ha. I\7Ib- Eb- ja+|:|b_ Mab/

\'

(33)

Let the a field be the field due to the sources and the b field be one of the reverse traveling
waveguide modes.

B=E  RR=R  #=]  MA=N

(34)
E0=(o -, PP RP=(h_+h, B FP=0  mP=o
Substituting Equation 34 into Equation 33 and using the facts that the tangential electric

field on the walls of the waveguide are zero and that the waveguide modes are orthogonal,
the mode coefficients of Equation 32 for the positive going field are:

+ _ 1 pSSY A 3 n n \ / jb Z
= oy @ b -&, ) 3-( A, +h, ) MfibnZay (35)
where:
p=lafa )AdS 36
m=o @y, My )2 (36)
St

11
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If the b field is now set equal to one of the positive going waveguide mode, the mode
coeffcients for the negative going field is:
1 [ —- - [ ~ -\ +ib
" = (etm +ezm)- J- (+ hy +hzm)- M fe*1PmZgy (37)
v

m

We have dready stated that y component of the electric field in the dot will be neglected.
Also we will separate the y dependence and the z dependence of the electric field in each
dot so that the tangential electric field in al of the dotsiswritten as:

= 20 2 0
ESIOtS = Za I i (Z)ga EZi’| al,l (X): (38)

Y 5

Where the | index indicates the ot number and the | index indicates the dot-mode (to be
defined later). This is equivaent to specifyfing the expansion function in Equation 18 to
be:

Yn(X,2)=yi(x,2) =a; 1 (X)!(2) (39)

For the time being let | i(z) be equal to the Dirac delta function d(z-z'). The magnetic
current source due to slot | and slot-mode | in the upper waveguideiis:

Mi =-XEz d(y)aj,(x)d(z- 2) (40)
Using Equations 32, 35 and 37, the y component of the magnetic field is:
o -ib.lz- Z'
Hy,, =-Ez, a Cn, hx, (X, y)e Jbp2- 21 (41)
n
where:
1 . . ot
Cn, == P, (X'.0aj (x')dx (42)
4R, <
Now, integrating over z':
o N - ibnlz- 2 4,
Hy,, (3:2) =~ E5 & cn e, (69§ i(@)e 1P ez (43)
n va
We will use Galerkin's approach and let the weighting function:
fm(x,2)=fpr(x,2) =ap (Xl p(2) (44)
Multiplying Equation 43 by Equation 44 and integrating over y and z, we find:
o N N - ibnlz- 2 4,
<f p,r |Hx|y i,I> =-a 4Pncnp’rcni’| dp@gi@e ibnlz Z|dZ dz (45)
n Z z

The double integral in Equation 45 will be defined as:

12
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Wifn, =@ p@d i (@)e ibnlz- 241 7 (46)

where Wi is the width of dot i in the z direction. Equation 45 becomes:

<f p,r|Hx|Yi,|>:'4Wié Pncnp,rcn”fni’p (47)
n

If the dots are much narrower than a wavelength in the z direction, we can use the step
function for thel function.

1i(z)=1 for |z-zi|<%
1(z)=0 for z- z| >% (48)
For pl} Equation 46 becomes:
& aWph 0 - ib.|z -
= WysanVi Gs80n o & Ioofzi- 25 (49)
Lp e 2 g 2 5
For p=i:
e by W, 0
gl- e 2 Sa?;@”;/v' 9+
— W\ € 2.
np =W B0 : (50)
E
2

Assume that an infinitely narrow (in the y direction) resistor is placed across dot |. The
conductance density for the resistor is:

W.

gi (X, 2) :?_'d(x- XR; )' i(2) (51)
|

Because | ; and | , only overlap when i=p, the matrix element due to the resistor is:

(forldlyin) _d
p.r L/ _HYip

= apr\Xr i | XR. 52

W = p.r( R.)al,l( R,) (52)

Rl ativistic Beam Current In A Waveguide

Because of it's high energy, a relativistic beam can be thought of as a current
source. A small piece of the beam located at xy,Ys, has a current density of the form:

3x,3.2) =" dlx- xp)ely - yp ez~ 2) (53)

The factor of %2 is results from exploiting the method of images. The y component of
magnetic field in the waveguide can be found using Equations 32, 35-37:

13
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Hy (%, y)—-—bé Mh (x,y)e 1onlz 7] (54)
n n

Equation 54 must be multiplied by the z dependence of the beam current density and
integrated:

i ib o éZ (Xb’yb) ¥ ikz' - ib |Z- Z'|
HYC(x,y,2) =- 2§ ———"—="h, (x,y) ¢g “e 1P “laz (55)
29 4R, e
where:
k=" (56)
Cc

Equation 55 becomes.

ib o ezn(xb,yb) 2iby,
4P Kk2- bn2

hy, (x.y)e K2 (57)

1
N |

The matrix element on the left hand side of Equation 31 is found by evaluating Equation
57 at y=0 and multiplying the result by f or @nd integrating:

2jbp,
b2 - k2

< pr‘Hmc>_' _Wpsag szpa Cn,,, &z, (Xb, Yb) (58)

Wavequide Mode as the Incident Field

Consider the case where the incident field is a waveguide mode.
HY(x,¥,2) = hy o (x, y)& 12n0? (59)
Using Equation 44, the left hand side matrix element is:

_ 0
(F pr|HI®) = Cop 1bno? (z)dzgdﬁ)(no(xO)apr(x)dx_ (60)
z 7]

Using Equation42 Equation 60 becomes:
B@non ge' ibnozp

2 2 (61)

<f o ‘ H'X”C> = AWpPhocno,,
M ode Power
Once Equation 31 is solved, the coupling coefficients for the waveguide modes

shown in Equation 32 can be determined. The magnetic current source for the lower
waveguide of Figures. 14 dueto the electric field in the dotsis:

14
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= 3d)8 g @4 211 (E; 2 (62)

&

Substituting Equation 62 into Equation 35, the forward and reverse coupling coefficients
are:

o e o . o O
(o =F3 GSag@mW' %tibmzi § ¢ WE,, =
uper T & & 2 g | upper "5
(63)
23] A 0
n =13 QSagé)mW' %tiPmzi 3 ¢ ‘ WE, =
lower : & 2 g : lower il 5
The power in mode m is given by the Poynting Vector:
1
+ A\ - OF 5 %
Prﬁ 5 R Etm Htm ) ZdSy (64)
fs b
Using Equations 32 and 36, Equation 64 reduces to:
2
m =Crm| Re{Pm} (65)

Pickup Transfer Impedance

This section will develop a definition of transfer impedance that can be used to
compare the waveguide design to cooling arrays that are built with conventional pickups.
The difference mode power is.

2 2

1 7t ap0 ey 0
oy 66
IDDtotaI 2 Dpugzggd/zg ( )

where d is the transverse height of the beam pipe and the ¥ factor in the front of the right
hand side of Equation 66 is because i, is a peak current ( not rms.) The left hand side of
Equation 66 is just the power flowing out of one of the waveguides. Using Equations 65
and 66, the impedance of the array becomes:

c$./2ReR))
7t =ZOVETRUO (67)

Pru ey ey O

&2 &d'25
The sum mode power is:
2
1 1 + &b O
2 PSiota = 2“Spu g 2 5 (68)

15
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The sum mode impedance of the array becomes:
. C5+/2Re[Ry} (69)
S - - o
pu ap 0
€29
Kicker Transfer Impedance

The definition of the a kicker impedance is given as:

gDpc o
Eﬁ
2 2z, (70)

where Dpc is the change of momentum through the kicker (either longitudina or
transverse), q is the charge of the antiproton, and P is the total kicker power. For a
particle travelling in the +z direction.

L
to+—
Db= o F=clt- to)- =t (71)
i, © 2 g

where F(zt) is the force on the particle and L is the length of the array. Since the time
dependence of the force is €", Equation 71 becomes:

Dpe= oF(2)ear (72)

1
N“—q_“r\)\r—

where dt=dz/c and have defined t,=-L/2c. The force on the particle comes from the
electromagnetic wave of the kicker:

F=q(E+c(z” nfi)) (73)
The change in longitudinal momentum becomes:
e, _ ek?qz (74)
q
The change in the transverse momentum becomes:
Dpc ¥ .
q|y = de, +hH, eedz (75)
-¥

For a particle travelling in the —z direction:

16
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¥ .
re, OE-€ *2dz (76)
9 .y
Dp ¥ ,
—:Iy = dEy - hHy e K2z (77)
-¥

The integrals in Equations 74-77 can be evaluated by using reciprocity. The reciprocity
law stated in Equation 33 can be rewritten as.

HEP” Ak - EX AP). Ads= gl - MP- EX. P (78)
S Y

where p designates the pickup fields and sources, and k designates the kicker fields (there
are no kicker sources.) The geometry that defines the surface S, and the volume V is
shown in Figure 16.

Kicker Beam
4 .
Port 4 P Pickup Beam Port 2
Region |
Port 3 4; ......... chker Wave y X chker Wave 4; ..........
<§ .......... P| Ckup Wa\/e : i R%'On ” P| Ckup Wave .......... §> POI’t l
N / Kicker Input
Termination )
So Pickup Output

Figure 16. Waveguide pickup showing surface for reciprocity integral

For a kicker, the fields at the 4 ports are:

=k _ . a _ =k _ . a _

Ef =ayé, (S12+1) E5 =0 E3 =ay8,S31 EK=0
-k __ ¢ ok “k_ ok
Hl—akhto( 1-1)  Hs=0 H3 =-ayh,S31 Hz =0
EP— . & =P EP—n & cp =
P=ap &, ED =Epe 19 Eb=ap &, Ef =Epeld
P=aphy, HY = Hpe 19 HE=-a, hy, HY = Hyeld

(79)

where E, and H,, are the beam fields in an unperturbed beam pipe and S;; and S;; are the
scattering parameters of the kicker. It was assumed that the absorber kills the pickup and
kicker fields at ports 2 and 4 and that only the fundamental mode propagates in ports 1
and 3. The left hand side of the reciprocity integral of Equation 78 is zero for ports 2, 3,
and 4. The integral isnon-zero only at port 1. Equation 78 becomes:

MRy = GIEX - 3P - AK - MPhv (80)
\'

17
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If the beam current density is chosen to be:

P = Z'Ebd(x - xp)d(y - yp)e ¢ (81)
which is the description of abeam travelling in the +z direction. Equation 80 becomes:
i sk ik
4Poagap =3b OFs (Xp, Yp )& *¥dz (82)
-¥

Using Equations 70 and 76,
_ip
4Poa k& pr = E ZZSk H( (83)

Since the total kicker power is equa to the sum of the power in the upper and lower
waveguides of Figure 2:

1
SR=ach (84)

The pickup coefficient in Equation 83 can be found from Equation 69. Equation 83
becomes:

ZZSp = ZSk (85)
For the transverse case, we need two transverse current sources:
i r
P=g2dx- xp)ly - ype Jkz (86)
MP =202 dx - xp)ly - ype 7 (87)
Also define;
2 1ady ('52~
ap Py==¢2<Z 88
Ps 0 232 o Dp ( )

Note that the impedance in Equation 80 is not the same impedance as defined in Equation
66. Substituting Equations 84, 86-88 into Equation 80 and using the definition of the
kicker impedance found in Equations 70 and 77:

ZZDp = ZDk (89)
To solve for the vector element on the left hand side of Equation 31, the same procedure

that was developed in Equations 53-58 is used. First, the Green's function for the
following sourcesis found:

P =50 dlx- xp)ly- v le- 2) (%0)

18
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P =3h 2 d(x- xp)dly - yo)d(z- 2) (o)
Using Equation 37:
C%T———eym( b Yp )™ Pm? (92)
1  iper '
Cmi:iﬁhzbhx (Xp. yp)e™1Pm? (93)

where the J,M superscripts indicate whether the coefficient is for the electric or magnetic
current source, respectively. The plus/minus sign in the superscript indicates whether the
solution is for z>Z' and z<z', respectively. The transverse magnetic field in awaveguide is
proportional to the transverse electric field:

A

Equation 93 becomes.

chr=¢ 2 N Do (xp, yplelom?
4By, zyave 2 oM
The magnetic fields for the point current sources are:
J+ 1 ip ~ - jbm|z- Z]
me(x,y,z,z) +ﬁ3eym( b Yb)hy,, (X, y)e °m (96)
M+ 1 h bmlz-
N (Xyzz)__FZWavezer(Xb Yo )k, (x.Y)e i (97)

The magnetic field due to the extended electric beam source of Equation 86 is found by
integrating Equation 96:

o ¥ [y
HY (x,y,2)= ¢ ;](:n(x,y,z,z')e'szdZ'+ (‘jﬂ;]('m(X,y,Z,Z')e'szdz' (98)

Xm
_¥

1 ~
HJ (x Y, z)———eyrn (xb,yb)hxm(x,y)

4R, 2
é . z ) ¥ (99)
3 Jbmz C\fj(bm- k)zldz'- elPmZ o J(bm+k)z'dz-l;|
8 -¥ z H
Using the radiation condition, the integrals vanish at infinity. Equation 99 becomes:
H) %y, Z)—%IE &y, (x b,Yb)%;nzﬁxm(X y)e I (100)

19
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The magnetic field due to the magnetic current is:
M __ 1y h 2iby, ¢ _ jkz

The total magnetic field is the sum of Equations 100 and 101:
h

Zwave

b

Hy, (X,Y,2) :——eym( XpYp) ﬁxm(x,y)e'jkz (102)

m
2 2
2P, 2 K2- by,

The matrix element on the left hand side of Equation 31 is found by evaluating Equation

102 at y=0, summing the result over al the m modes, multiplying this result by f ,, and
integrating over x and z:

h

- b
(F o [HIPS) =2 'b W, ’kzp c (x )—mee " oy
p,r|"'x Sag a mpreym b:Yb k } bm2
Summary of Equations
The following matrix equation is to be solved for the electric field in the dots.
i o B 0
<f m‘Hg(mC)> —asa f m|H>(<k)|y n)*+(Fmlaly n>:Ezn (104)
n 8k 7]
wherey , (and f ,) are expansion functions for the field in the dot:
yn(x,2) =y (x,2) =aj(x)!(2)
1i(z)=1 for |z-zi|<%
1i(z)=0 for z- zj] >% (105)
The right hand side matrix elements are:
(Forldyis) _d
p,r l, _HLp
= ap XRi il XRi (106)
Wi Ri pr( )al ( )
<f p,r|Hx|Yi,|>:'4Wié Pncnp,rcn”fni’p (107)
n
where:
1. .= N
ZECdetm htm). zdS (108)
St
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1 . . 1\ ot
==y, (<,0)aj (x)dx (109)
4P,
For pll ,:
W: 6. a®nWpo - jb zi-2
fi,, = WpSag=" 'ESa . pée ol 2o (110)
For p=i:
e bW, 0
'J B x
-e’ 2 Sagé)”;N' g
— W e 2.
Nip —W.g jani : (111)
2 T
g ;

For a difference mode pickup, a sum mode pickup, and a sum mode kicker, the vector
elements on the left hand side of Equation 104 are:

kKW 0 - jkz 2jb
f ‘H'”C>—-—W P k%2 o 2, (x n 112
< p,r ) psag > g an Np zn( b Yb)b 2 (112)

n

For a difference mode kicker, the vector elements are:
h

wave b

< |H|nc> 21|bWSa_§ Jk2pa cmpreym( b yb)kzm—b2 (113)

m

Once the matrix equation Equation 104 is inverted for the electric field in the dots, the
amplitude of the waveguide modes flowing out of the structure can be calculated. The
mode coefficients for the output (lower) waveguideis:

L o
ﬁw = ié & M%ijbmzi é Cmy Wiz, L (114)
lower 7% €& 2 g | llower i’

where the top sign is for the signal traveling in the + z direction (for a beam traveling in
the +z direction) and the bottom sign is for the signal travelling in the —z direction. Note
that this formula is only valid for the regions upstream and downstream of the dots (not
inside the slot region.)

The sum mode pickup impedance is defined as.

2
2 J
PSPUtotaI _9 2 ZSPU (115)

where i, is a peak current (not rms.) The sum mode pickup impedance is given from the
power travelling in the fundamental waveguide mode:
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C3./2P
/Zé = Z0vV=0 (116)
pu ngQ
e2g

z g—— Dpu (117)
which resultsin:

C:.[2P
7zt = N7 (118)

A kicker impedance is defined as:

(119)

From reciprocity, the sum mode kicker impedanceis:
ZZSp = ZSk (120)
where the signal and beam directions shown in Figure 16 is followed. For the difference

mode kicker, the dlectric field in the dots and the hence the mode coefficients is calculated
using the vector described by Equation 113. The kicker impedance is becomes

2C5./R
zgk :m?—b‘/(_j_o (121)
&2p

Waveguide Modes For A Rectanqular Wavequide

We will assume an electric vector potentia of the form:

F=%F_ (x,y)e °mn? (122)
Equations 5 and 7 become:

&x,y)x =0 (1233)

é(x,y)y = jbm.nhc':xm,n (123b)
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)=
&x,y); =hc—m (1230)
Ty
» w, %9
h(x,y)x =- —29k +— (123d)
k& W™p
h(xy)y =- 1% T (123¢)
Y K2 Xty
~ F
A(x,y), = - —2mn T 123f
(X,¥)z 2 M (123f)
The boundary conditions require that:
Ey =0 atx=za2 (124a)
E,=0ay=0bandat x = a2 (124b)

For smplicity, we will consider the beam centered at x=0. This will require F to be even
in X. The electric vector potential that satisfies these equations and constraintsis:

1 HA2m+Dp 6 _ap O
= E,cosc-————= X<cosc— Yy~ 125
Xmo “jonahc O & a g &b g (129
2 2 zae€2m+1)p('j2 ampc'52
bmn=k“-¢——F—+ - ¢+ (126)
' e a g ébg
Equation 67 becomes:
éxm,n =0 (127a)
A HA2m+Dp 6 _ap O
e =E,COSC——— X=COSC— Y+ 127b
Ymn — 0 sg a ) sgbyﬂ (1270)
A 1 np HA#2m+Dp 6. ap 0O
=- - — E, COSC—————X=9n¢c—Yy=+ (127¢)
Zmn - jbpn b ° 58 a 5 &b’g
~ 1 &, ;3é2m+1)p('52('-j aAd2m+Dp 6 __ap 0
h =- Cke- 2 —25% °E Cosg-———— X~cosc—Yy+  (127d)
Xm,n -0
! hkbmn& € a g3 g éb’ g
~ 1 &#2m+D)pdenpo . HA2m+Dp 6. ap 0O
h =- BW O Gn&TTID, Ogn & 9 127¢e
mn T kb€ a Kb’ 'S a ‘p TR (127€)
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~ | a&2m+Dp 35(2 +1)p 0 __anp 0
h =- 9E <Co 127f
Zm,n hk & a e a g SC—— &b g ( )
Equation 36 becomes:
2
Pon = = - (Eotl’zb (128)
2d h— m.n

9k2 85(2m +1)p -
¢ & a o
where d,=1 for n=0 and d, =2 for nl0. The denominator of Equation 128 can be
considered the power impedance of the waveguide.

The wave impedance is.

Zye=p_<omn T (129)
' x =c 0
2_a2m+Dpg =
Cke-g——F-=

¢ & a0

so that the power impedanceiis:
Zhn = 2dn b AN (130)
Because we are considering only even modes in x and that the z component of electric

field must vanish at the ends of the dot (x = £L;/2), a reasonable expansion function for
a(x) is

ai,|(x)=cos§(2|+l)p O (131)
Equation 42 becomes
Cn,, = L Gy 2L 2l+1 cos¢3?2m+1)25+lp9 (133)
L E @ p 2ad | o e 2 a 2
(2m+2)28512 - (2 +1)
éag

Calculation of the dectric field along the length of the wavequides.

We can assume that each one of the dots in Figure 13 to be a magnetic current
source. Thetotal field in the waveguide will be a sum of the fields resulting from each dot.
For asingle dot and slot mode, the magnetic current sourceis:

Mi| =XE5 ;1 ()dy)! () (134)

Using Equations 37, the waveguide mode coupling coefficients are:
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1 I 1 1 [ ] _- ! 1
Cﬁm =tk P, g‘xn (x',0)a; (x')x 9 (2)e*IPnZ dz (135)

If the observation point is at the center of the waveguide (x=0) then Equation 135
becomes:

£ _ \ L (\eEIPnZ g
c;i,l =2E; O ()% dz (136)
V4
For: z<z- Wi C. =0
2 il
Equation 136 becomes:
Wi
Zj+—
2
Cn,=-Ez.Cn, O €'%dz (137)
: R
Zi-——
2
adWi 0 - ib.z:
Cryy =~ WiEz; Oy S5 100" (138)
The electric field is found from Equation 32:
= o W ¢ ~ ibn(z- z;
Eij =-Wikz a Cni,lsag n2 I geyn " €z, )EJ nle-) (139)
n
For: z>zi+% Chi| =0
The dlectricfield is:
= o W ¢ ~ - ibn(z- z:
Ei =WE;, a cniJSa;e; ”2 IgGYn +ezn)e ibn(z-2) (140)
n
For: gezi- ﬂ9<z<€;[%i+ﬂ+
e 29 e 29
V4 b7
c;” =E Cn, COF Mdz (141)
: W
|
2
Z; +—L
Ch =-Ez Cn, O €°n%dz (142)

The dectric field for the forward and reverse waves at x=0is;

25



4/15/98

3:45 PM

G g ibnle-2)

N A . 1- e 2 e'J n\Z- Zj
Ef| =WE, A cn, (e +€; )Q . N (143)

il . i,l \"Yn n’c anVVi :

1]

G2 elonle- )

~ o A . 1_ e 2 eJ n\Z- Zj _
Ei,| =- WiEZiJ a Cni,| (eyn B eZn)é jan _ (144)

n i N

& o

The total electric field for the region enclosed in the dot is the sum of Equations 143 and
144:.

bW,
= o e-J 2
Eii-y=WEz; a cn, (eyn : y) bW, sin(by(z- 7)) (145)
n
2
= o) 1 6{‘% : janI 9
Ei - 2=WE; A cn,, (eZn : z)_b e 2 coslb,(z- z »i (146)
n j n2 | v
In summary:
For: z<z- W
2
= ~ 0 W: &/. ~\i -7
Ei,l'y:'WiEz”aCn”S&‘Q d Iqeyn 'Y)Ejbn(z ZI) (147)
"h e 2 g
= - 0 W: &/. ~\i -7
By 2=WE, & Cni,|sa’§%9(ezn . pibn(z-2i) (148)
a e @
For ga;ezi - ﬂ9<z<8‘%i +ﬂ9
e 29 e 2 g
bW,
. o2
Ei - Y=WE; a cn, (éyn ' 37) bW, sin(by(z- 7)) (149)
n
2
o) 1 6{‘% : janI 9
Eij- 2=WiEz, @ Cn,, (ezn z) bW gL @ 2 coslby(z- z; )): (150)
n J ’
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For: z>z +%

— ~ o @ W "A
Ei) - ¥=WEz, a cn; Sac— I(":)(eyn
h T e 2 g

— ~ o W "A
Ei,|'Z:VViEZi|aCni|Sa§ : I(‘?(ezn
"h T e 2 g
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